
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3281

A New Improved Vertical Partitioning Scheme

for Non Relational Databases Using Greedy

Method

Jaspreet Kaur, Student of M.Tech (CSE), Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab,

India
1

Kamaljit Kaur, Assistant Professor (CSE Deptt), Sri Guru Granth Sahib World University, Fatehgarh Sahib,

Punjab, India
2

Abstract: Non Relational database is a database used to store large amounts of data. Improving the performance of a

database system is one of the key research issues. As publications of context are rising, a new vertical partitioning

scheme is proposed to handle better data load and to improve performance for non relational databases. In the proposed

work, an algorithm is developed by concatenating the vertical partitioning scheme and greedy algorithm to enhance the

performance of data load by altering the vertical partitioning method and to check out the time performance by using

the greedy algorithm. In this paper, different performance parameters named data load, time in terms of execution time,

communication time are analyzed against data size and nodes using non relational databases so that we get better

results from existing algorithm.

Keywords: Non Relational Databases, Vertical Partitioning Scheme, performance, Greedy Algorithm.

 1. INTRODUCTION

Non relational databases are a broad class of database

management systems identified by non-adherence to

the widely used relational database management

system model. Non relational databases are not built

primarily on tables, and generally do not use SQL as

its query language for data manipulation. Other

factors which differentiate it are join operations

cannot be performed, it doesn’t guarantee ACID

properties and can be scaled horizontally. In Non

relational database, BASE transactions are used

instead of ACID transactions (atomicity, consistency,

isolation, and durability - four obvious features of

traditional relational database systems in relational

databases) [1]. BASE transactions are used in non

relational databases which mean:-

 1. Basically Available (B) -an application works

basically all the time. [1]

2. Soft state(S) -Does not have to be consistent all the

time. [1]

3. Eventually Consistent (E) -But will be in some

known-state eventually. [1]

Non Relational databases emerged as companies,

such as Amazon, Google, and LinkedIn and Twitter

struggled to deal with unprecedented data and

operation volumes under tight latency constraints.

There are various types of non-relational databases

which are given below [1]:

 Key value Stores

 Document oriented databases

 Column oriented databases

Other types of non relational databases are-xml

databases, graph databases, Object oriented databases

etc.

Key-value pairs in the store are organized according

to the key. Keys are then assigned to a partition.

Once a key is placed in a partition, it cannot be

moved to a different partition. Oracle Non-relational

Database automatically assigns keys evenly across all

the available partitions. E.g. of databases which store

key-value pairs are Raik, Redis, Scalaris and

Dynamo etc.

In Column-stores each database table store column

separately, with attribute values belonging to the

same column as compared to traditional database

systems that store entire records (rows) one after the

other. It is mainly used in OLAP (online Analytical

Processing), Data Mining operations. The only

main difference between row and column stores

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3282

is physical storage and query optimization. E.g. of

databases to store column oriented are Google big

table, Hbase, Cassandra and Pnuts etc. [2]

Fig 1:- Column V/S Row Oriented Database Storage

[2]

Document Oriented Databases treat a document as

a whole and avoid splitting a document into its

constituent name/value pairs. At a collection level,

this allows for putting together a diverse set of

documents into a single collection. The word

document in document databases contains loosely

structured sets of key/value pairs in documents,

typically JSON (JavaScript Object Notation), and not

documents or spreadsheets. Other types of databases

are mongo db, Couch db etc. [3]

Advantages of Non Relational Databases

Non relational databases have many advantages

which are listed below [3]:

 Non-relational databases process data faster

than the relational databases because they do not use

ACID properties.

 Non-relational databases have simpler data

models than the relational databases.

 Non-relational databases are highly

scalable than the relational databases.

 Non-relational databases are very flexible

than the relational databases because they are schema

less.

 Non-relational databases can handle a

very large amount of data.

 Non-relational databases have high

performance than relational databases.

1.1 Partitioning Methods

A partition is a division of a logical database or its

constituting elements into distinct independent parts.

Database partitioning is normally done for

manageability, performance or availability reasons.

A popular and favorable application of partitioning is

in a distributed database management system. Each

partition may be spread over multiple nodes, and

users at the node can perform local transactions on

the partition. This increases performance for sites

that have regular transactions involving certain views

of data, while maintaining availability and security.

[4]

Different partitioning schemes are used to handle the

work load on distributed databases.

1. Horizontal partitioning is a partitioning method

that partitioning the table into no of smaller tables on

the basis of rows. It involves putting different rows

into different tables. Relational databases introduced

the concept of row oriented databases. [4]

2. Vertical partitioning involves creating tables

with fewer columns and using additional tables to

store the remaining columns.

Normalization also

involves this splitting of columns across tables, but

vertical partitioning goes beyond that and partitions

columns even when already normalized.

Different physical storage might be used to realize

vertical partitioning. [4] Non relational databases

introduced the concept of column oriented databases.

Advantages of Partitioning
Partitioning a database can have the following

manageability and performance benefits.

 For transfer or access subsets of data quickly

and efficiently, while maintaining the integrity of a

data collection.

 To perform maintenance operations on one

or more partitions more quickly. The operations are

more efficient because they target only these data

subsets, instead of the whole table.

 For improving query performance, based on

the types of queries you frequently run on your

hardware configuration.

2. PROBLEM FORMULATION

In view of limitations of existing partitioning

algorithm which are more prone to load crashes, time

line delay and are less scalable. The proposed work

deals with the cost in terms of time and load sharing

of the system by resolving all the existing problems

using non-relational databases. A new improved

algorithm is proposed by concatenating the vertical

partitioning scheme and greedy approach. The

proposed work enhances the performance of data

load by altering the vertical partitioning method and

to check out the time performance by using the

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3283

greedy method. Different performance parameters

named data load, time in terms of execution time,

communication time are checked against different

data sizes and nodes using non relational databases.

The need of proposed work is:-

 To have better scalability results from

existing algorithm.

 To have better utilization of resources using

load sharing.

3. PROPOSED ALGORITHM (VPartition)

 In order to overcome the limitations of existing

partitioning algorithm; a new algorithm named

VPartition, is proposed that improves the

performance of the existing algorithm. The

algorithm includes an improved vertical

partitioning scheme where cost is calculated in

terms of time using greedy method. This results

in improved data load as compared to previous

approach.

VPartition (I, T, TI, w, p, r, D, C comm., C route, N)

VPartition (I: counter initialized to 0, T: time, Ti:

time at ith second is initialized to 0, w: weight of

database, p: partition data, r: path function, D: subset

of query, C comm.: cost of comm., C route: cost of path

finding, N: no of servers)

Call Greedy Algorithm

Ti = cost (w, |D|) // Cost Function ………. (1)

For all [Cost (r (I, w)) = C route] // Path Function…..

(2)

C comm. = C request + C response // Total communication

cost for databases

T comm. (w, i, N) =
0, if r (N, w) = i

Ccomm., if(r (N, w)! = i)

//Communication Time

T comm. = 𝐶 𝑐𝑜𝑚𝑚. − 𝐶comm. N // For N

servers

TN = C route + C comm. - C comm. / N + cost (w, |p|) //

Total time for N servers

S (N) = T1 / TN // Speed

 Pseudo code 3.1: VPartition

I =0;

Ti =0;

For (I=0; I< No_Of_Queries; I++)

Cost = Weight_Of_Select_Database + Subset_of_

Query;

End For

Pseudo code 3.2: Cost Function described in

Equation 1of Pseudo Code 1

I =0;

Ti =0;

For (I=0; I< No_Of_Queries; I++)

Path = Cost_Of_Weight_Of_Select_Database +

Time;

End For

Pseudo code 3.3: Path Function described in

Equation 2 of Pseudo Code 1

3.4 Greedy Algorithm

Greedy algorithm assigns one reduce task to a rack at

a time. When assigning a reduce task to a rack, it

chooses the rack which incurs minimum total traffic

if the reduce task is assigned to that rack so that to

minimize the maximum total traffic for all racks in

the data set when given the number of mappers in

each rack.

Greedy Algorithm (N: No of racks, M: No of

mappers, R: no of total reducers, {m1, m2 …mn}: the

number of mappers on each rack, {r1, r2.....rn}: A

reducer state tuple, State_tuples [N]: {0, 0 ….0})

For i=1 to R do

Minimal infinite

For j=0 to N do

Traffic = (M-2mj). (state_tuple [j] +1) + mjR

If traffic <minimal then

Candidate = j

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3284

End if

End for

State_tuple [candidate] ++

End for

Return state_tuple

 Pseudo code 3.4: Pseudo code for Greedy

Algorithm [11]

 4. IMPLEMENTATION RESULTS

The result analyses of the proposed work are carried

out on java platform and various performance

parameters are discussed using Couch db as non
relational databases. Apache Couch DB is a free and

open-source non relational database. It is a top-level

project of the Apache Foundation and it is written in

Erlang, java a programming language aimed at

concurrent and distributed applications. It complies

with the ACID properties, providing serialized

updates and with the use of MVCC reads are never

locked. It is distributed in nature and supports

various types of replication schemes and conflict

resolution. In the implementation comparative

analysis of different databases of various data sizes

and different number of nodes are used in order to

analyze the data load, time in terms of execution

time, communication time and total time taken with

existing work and the time taken to execute the

query.

Comparative analysis using different data sizes

in terms of load, execution time, comm. Time

and total time with existing work.

 VPartition algorithm is executed by providing

different input parameters (time, execution time,

communication time and load) using different data

sizes.

 Fig 4.1 Using database (db_demo) at size

100KB with one node

Fig 4.2 Using database (db_demo2) at size 10MB

with one node

Comparative analysis using increase in number of

nodes.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3285

VPartition algorithm is executed by providing

different input parameters (time, execution time,

communication time and load) with increase in no of

nodes as data size is constant.

Fig 4.3 Testing with Two Nodes at Data Size 100KB

with Database as db_demo

Fig 4.4 Testing with four Nodes at Data Size

100KB with Database name db_demo

To execute a query and execution time is

calculated according to particular query.

 In the implementation, a query is executed

according to various databases and execution time is

calculated according to particular query. On selecting

any value of particular field, all records of selected

database are display on the screen and execution time

is calculated according to query.

Fig 4.5 Image for Name Query using database as

(db_demo)

Fig 4.6 Image for Roll no. query using database as

(db_demo2)

 5. GRAPHICAL ANALYSIS

Graphical analysis using different data sizes in

terms of load, execution time, communication

time and total time with existing work.

 In the graphs, all input parameters are

checked 5 times for different data sizes of different

databases named as db_demo, db_demo1,

db_demo2, db_demo, db_test are discussed. E.g. first

check the execution time parameter 5 times at 100KB

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3286

for db_demo database, then at 1MB, 10MB and so

on. Then calculate the mean of depicted values of

various input parameters for different data sizes. The

formula for mean:-

 Mean= Sum of the depicted values at data size

(100KB) /total no of cases

 Total no of cases =5

 Different databases with different data sizes are

named as db_demo =100KB, db_demo1=1MB,

db_demo2=10MB,db_temp=100MB,

db_test=1000MB.

 Different performance parameters are

analyzed using different data sizes. Results are

shown below in the graph with previous approach.

 Graph 5.1 Comparison graph of Data size v/s

Time

From the above graph, it has been concluded that

data size increases, time also increases. Time of

proposed algorithm is quite less than previous time.

There is a little degradation in proposed work as

compared to existing work.

 Graph 5.2 Comparison graph of Execution Time

v/s Data size

From the above graph, the execution time of

proposed algorithm is quite less than previous

execution time as shown in graph. All the time in

terms of execution time is reduced as compared to

previous results by proposed algorithm using

greedy method. As the data size increase there is a

little increase in execution time.

 Graph 5.3 Comparison graph of Load v/s Data size

From the above graph, the load and resource

utilization of proposed algorithm is quite less than

previous load and resource utilization as shown in

graph. All the cost in term of time is reduced in

algorithm due to the vertical partitioning approach

clubbing in proposed scenario.

0
10
20
30
40
50
60
70
80
90

100

E
x
ec

u
ti

o
n

 T
im

e(
m

s)

Datasize(KB)

proposed

previous

0

10

20

30

40

50

60

70

Ti
m

e
(m

s)

Datasize(KB)

proposed

previous

0

10

20

30

40

50

60

L
o

a
d

 (
%

)

Data Size (KB)

proposed

previous

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3287

 Graph 5.4 Comparison graph of Comm. time v/s

Data size

From the above graph, the communication time of

proposed algorithm is quite less than previous

communication time as shown in this graph. Time in

terms of communication time is reduced in our

algorithm due to the greedy method clubbing in our

proposed work. Communication time of proposed at

100KB takes an average of 39ms as compared to

previous one ,it takes an average of 52ms so there is

a little degradation in performance of communication

time as compared to previous approach with increase

in data size.

Graphical analysis using different no. of nodes in

terms of load, execution time, communication

time and total time with existing methods.

In the graphs, all input parameters are checked 5

times according to increase in no. of nodes with data

size to be constant of different databases named as

db_demo, db_demo1, db_demo2, db_demo, db_test.

E.g. first test the execution time parameter 5 times

with two nodes, then with 4 nodes and so on for one

database (db_demo) to be constant always. Then

calculate the mean of depicted values of various

input parameters for different no. of nodes. The

formula for mean:-

Mean= Sum of the depicted values with two nodes,

four nodes……. /Total no of cases

Total no of cases =5

Different performance parameters are analyzed using

increase in no of nodes. Results are shown below in

the graph.

 Graph 5.5 Comparison graph of Nodes v/s Time

From the above graph, it has been concluded that

within increase in no of nodes, time also increases.

Time of proposed algorithm is quite less than

previous time using greedy algorithm. There is a

little degradation in proposed work as compared to

previous method.

 Graph 5.6 Comparison graph of Execution Time

v/s Nodes

From the above graph, the execution time of

proposed algorithm is quite less than previous

execution time in case of n number of nodes as

shown in graph. Execution time analyzed with four

nodes takes an average of 45ms as compared to

previous approach; it takes an average of 50ms

execution time. There is a little degradation in

performance of execution time acc to increase in no

of nodes as compared to previous approach.

0

10

20

30

40

50

60

70

80

90

C
o

m
m

u
n

ic
a

ti
o

n
 T

im
e

(m
s)

Datasize (KB)

proposed

previous

0

10

20

30

40

50

60

2 4 8 16 32

T
im

e
(m

s)

Nodes

proposed

previous

0

10

20

30

40

50

60

2 4 8 16 32

E
x
ec

u
ti

o
n

 T
im

e(
m

s)

Nodes

proposed

previous

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3288

 Graph 5.7 Comparison graph of Load v/s Nodes

In the above graph, the load and resource utilization

of proposed algorithm is quite less than previous load

as shown in graph. Data load is reduced in our

algorithm due to the vertical partitioning approach

clubbing in proposed scenario. Data load analyzed

with two nodes takes an average of 30% as compared

to previous algorithm; it takes an average of 33%

load. There is a little degradation in performance of

load acc to increase in no of nodes as compared to

previous approach.

 Graph 5.8 Comparison graph of Comm. Time v/s

Nodes

In the above graph, the communication time of

proposed algorithm is less than previous

communication time as taking n number of nodes as

shown in graph. Time in terms of communication

time is reduced in our algorithm due to the greedy

algorithm clubbing in proposed work.

 6. CONCLUSION AND FUTURE WORK

In context management platform in which number of

context publications always keep rising, so to handle

better data load, a new vertical partitioning scheme is

proposed for non-relational databases using greedy

algorithm. Our proposed work is heading toward the

improvement in Database execution time and also in

load sharing. The proposed work enhances the

performance of data load by altering the vertical

partitioning method and to check out the time

performance by using the greedy method. In the

existing algorithm, the load and time parameter is

quite higher which are more prone to load crashes,

time line delay and less scalable. Different

performance parameters are graphically analyzed in

terms of execution time, communication time and

load with different data sizes and increase in no of

nodes with previous results. From the results, it has

been concluded that the time in terms of execution

time, communication time and load sharing is

approximately half of previous method using new

improved vertical partitioning scheme which leads to

better scalability, robustness and better utilization of

resources. There is a little degradation in

performance of proposed scheme with increase in

data size and with increase in no of nodes as

compared to previous method.

In future work, a hybrid vertical partitioning

scheme can be implemented for distributed

database using all non-relational databases to

check the issues of scalability and robustness.

REFERENCES

[1] C. Strauch , “NoSQL databases”, February 2011.

[Online].Available:http://www.christof- strauch.de/nosqldbs.pdf.

[2] Column oriented database technologies [online] Available:
http://dbbest.com/blog/

 Column-oriented-database-technologies/

[3] Sharma Vatika, Dave Meenu, “Comparison of SQL and NoSQL
Databases”, International Journal of Advanced Research in Computer

Science and Software Engineering, Volume 2, Issue 8, August 2012.

[4] Partitioning [online.] Available: http://en.
 Wikipedia.org/wiki/Partition (database)

[5] Muthura. J, Chakravarthy.S, Varadarajan.R , Navathe S.B, “A

Formal Approach to the Vertical Partitioning Problem in Distributed
Database Design”, In Proccedings of the second international conference

on Parallel and distributed information systems, August 1992, pp. 26-35.

 [6] Khan Shahidul Islam, Latiful Hoque Dr. A. S. M., “A New
Technique for Database Fragmentation in Distributed Systems”, In

International Journal of Computer Applications, Volume 5- No.9, August

2010.
 [7] Abuelyaman Eltayeb Salih, “An Optimized Scheme for Vertical

Partitioning of a Distributed Database” International Journal of Computer

Science and Network Security, Volume 8 -No.1, January 2008.
 [8] Lakshman Avinash, DeCandia Giuseppe, Hastorun Deniz, Madan

Jampani, Gunavardhan Kakulapati, Lakshman Avinash,

“Dynamo: Amazon’s Highly Available Key-value Store”, In proceeding
of symposium on operating systems principles, October 2010.

0
5

10
15
20
25
30
35
40
45
50

2 4 8 16 32

L
o

a
d

 (
%

)

Nodes

proposed

previous

0

10

20

30

40

50

60

2 4 8 16 32

C
o

m
m

u
n

ic
a

ti
o

n
 T

im
e(

m
s)

Nodes

proposed

previous

http://www.christof-/
http://dbbest.com/blog/
http://en/

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3289

 [9] Gomes Diogo, Jogao Gonc, Ricardo Santos and Rui L Aguiar,
“XMPP based Context Management Architecture”, In IEEE Globecom,

Dec 2010.

 [10] Jindal Alekh and Dittrich Jens, “Relax and Let the Database Do
the Partitioning Online”, In Proc. BIRTE, June 2011, pp.65-80.

 [11] Li-Yung Ho, Jan-Jan Wu and Pangfeng Liu, “Optimal Algorithms

for Cross-Rack Communication Optimization in Map Reduce

Framework” IEEE International Conference on Cloud Computing , June
2011, pp.420-427.

 [12] Cattell Rick, “Scalable SQL and NoSQL Data Stores”,

Communications of the ACM, December 2011.
 [13] Santos Nuno, Pereira Oscar M. and Gomes Diogo, “Context Storage

Using NoSQL”, Conferência sobre Redes de Computadores , Coimbra,

Portugal, Volume 2, Nov 2011.

http://arnetminer.org/person/jens-dittrich-1222287.html

